Subrings invariant under an action #
class
IsInvariantSubring
(M : Type u_1)
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
(S : Subring R)
:
A typeclass for subrings invariant under a MulSemiringAction
.
Instances
theorem
IsInvariantSubring.smul_mem
{M : Type u_1}
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
{S : Subring R}
[self : IsInvariantSubring M S]
(m : M)
{x : R}
:
instance
IsInvariantSubring.toMulSemiringAction
(M : Type u_1)
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
(S : Subring R)
[IsInvariantSubring M S]
:
MulSemiringAction M ↥S
Equations
def
IsInvariantSubring.subtypeHom
(M : Type u_1)
[Monoid M]
{R' : Type u_2}
[Ring R']
[MulSemiringAction M R']
(U : Subring R')
[IsInvariantSubring M U]
:
The canonical inclusion from an invariant subring.
Equations
- IsInvariantSubring.subtypeHom M U = let __src := U.subtype; { toFun := (↑↑__src).toFun, map_smul' := ⋯, map_zero' := ⋯, map_add' := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
IsInvariantSubring.coe_subtypeHom
(M : Type u_1)
[Monoid M]
{R' : Type u_2}
[Ring R']
[MulSemiringAction M R']
(U : Subring R')
[IsInvariantSubring M U]
:
⇑(IsInvariantSubring.subtypeHom M U) = Subtype.val
@[simp]
theorem
IsInvariantSubring.coe_subtypeHom'
(M : Type u_1)
[Monoid M]
{R' : Type u_2}
[Ring R']
[MulSemiringAction M R']
(U : Subring R')
[IsInvariantSubring M U]
:
(IsInvariantSubring.subtypeHom M U).toRingHom = U.subtype