Polynomial module #
In this file, we define the polynomial module for an R
-module M
, i.e. the R[X]
-module M[X]
.
This is defined as a type alias PolynomialModule R M := ℕ →₀ M
, since there might be different
module structures on ℕ →₀ M
of interest. See the docstring of PolynomialModule
for details.
The R[X]
-module M[X]
for an R
-module M
.
This is isomorphic (as an R
-module) to M[X]
when M
is a ring.
We require all the module instances Module S (PolynomialModule R M)
to factor through R
except
Module R[X] (PolynomialModule R M)
.
In this constraint, we have the following instances for example :
R
acts onPolynomialModule R R[X]
R[X]
acts onPolynomialModule R R[X]
asR[Y]
acting onR[X][Y]
R
acts onPolynomialModule R[X] R[X]
R[X]
acts onPolynomialModule R[X] R[X]
asR[X]
acting onR[X][Y]
R[X][X]
acts onPolynomialModule R[X] R[X]
asR[X][Y]
acting on itself
This is also the reason why R
is included in the alias, or else there will be two different
instances of Module R[X] (PolynomialModule R[X])
.
See https://leanprover.zulipchat.com/#narrow/stream/144837-PR-reviews/topic/.2315065.20polynomial.20modules for the full discussion.
Equations
- PolynomialModule R M = (ℕ →₀ M)
Instances For
Equations
- instInhabitedPolynomialModule R M = Finsupp.instInhabited
Equations
- instAddCommGroupPolynomialModule R M = Finsupp.instAddCommGroup
This is required to have the IsScalarTower S R M
instance to avoid diamonds.
Equations
Equations
- PolynomialModule.instFunLike R = Finsupp.instFunLike
Equations
- PolynomialModule.instCoeFunForallNat R = Finsupp.instCoeFun
The monomial m * x ^ i
. This is defeq to Finsupp.singleAddHom
, and is redefined here
so that it has the desired type signature.
Equations
Instances For
PolynomialModule.single
as a linear map.
Equations
Instances For
Equations
- PolynomialModule.polynomialModule = inferInstanceAs (Module (Polynomial R) (Module.AEval' (Finsupp.lmapDomain M R Nat.succ)))
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
PolynomialModule R R
is isomorphic to R[X]
as an R[X]
module.
Equations
- One or more equations did not get rendered due to their size.
Instances For
PolynomialModule R S
is isomorphic to S[X]
as an R
module.
Equations
- PolynomialModule.equivPolynomial = let __src := (Polynomial.toFinsuppIso S).symm; { toFun := __src.toFun, map_add' := ⋯, map_smul' := ⋯, invFun := __src.invFun, left_inv := ⋯, right_inv := ⋯ }
Instances For
The image of a polynomial under a linear map.
Equations
Instances For
Evaluate a polynomial p : PolynomialModule R M
at r : R
.
Equations
- PolynomialModule.eval r = { toFun := fun (p : PolynomialModule R M) => Finsupp.sum p fun (i : ℕ) (m : M) => r ^ i • m, map_add' := ⋯, map_smul' := ⋯ }
Instances For
comp p q
is the composition of p : R[X]
and q : M[X]
as q(p(x))
.
Equations
- PolynomialModule.comp p = ↑R (PolynomialModule.eval p) ∘ₗ PolynomialModule.map (Polynomial R) (PolynomialModule.lsingle R 0)