Documentation

Mathlib.Algebra.PUnitInstances.Algebra

Instances on PUnit #

This file collects facts about algebraic structures on the one-element type, e.g. that it is a commutative ring.

theorem PUnit.addCommGroup.proof_4 :
∀ (x : PUnit.{u_1 + 1} ), (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) 0 x = (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) 0 x
theorem PUnit.addCommGroup.proof_6 :
∀ (a b : PUnit.{u_1 + 1} ), a - b = a - b
theorem PUnit.addCommGroup.proof_9 :
∀ (n : ) (a : PUnit.{u_1 + 1} ), (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (Int.negSucc n) a = (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (Int.negSucc n) a
theorem PUnit.addCommGroup.proof_7 :
∀ (a : PUnit.{u_1 + 1} ), (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) 0 a = (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) 0 a
theorem PUnit.addCommGroup.proof_8 :
∀ (n : ) (a : PUnit.{u_1 + 1} ), (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (Int.ofNat n.succ) a = (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (Int.ofNat n.succ) a
theorem PUnit.addCommGroup.proof_1 :
∀ (a b c : PUnit.{u_1 + 1} ), a + b + c = a + b + c
theorem PUnit.addCommGroup.proof_5 :
∀ (n : ) (x : PUnit.{u_1 + 1} ), (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (n + 1) x = (fun (x : ) (x : PUnit.{u_1 + 1} ) => PUnit.unit) (n + 1) x
theorem PUnit.addCommGroup.proof_11 :
∀ (a b : PUnit.{u_1 + 1} ), a + b = a + b
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
@[simp]
@[simp]
@[simp]
theorem PUnit.sub_eq {x : PUnit.{1}} {y : PUnit.{1}} :
@[simp]
theorem PUnit.div_eq {x : PUnit.{1}} {y : PUnit.{1}} :
@[simp]
Equations