Documentation

Mathlib.Algebra.Order.Group.PiLex

Lexicographic product of algebraic order structures #

This file proves that the lexicographic order on pi types is compatible with the pointwise algebraic operations.

theorem Pi.Lex.orderedAddCancelCommMonoid.proof_1 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedCancelAddCommMonoid (α i)] :
∀ (x x_1 : Lex ((i : ι) → α i)), x x_1∀ (z : Lex ((i : ι) → α i)), z + x z + x_1
theorem Pi.Lex.orderedAddCancelCommMonoid.proof_2 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedCancelAddCommMonoid (α i)] :
∀ (x x_1 x_2 : Lex ((i : ι) → α i)), x + x_1 x + x_2x_1 x_2
instance Pi.Lex.orderedAddCancelCommMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedCancelAddCommMonoid (α i)] :
OrderedCancelAddCommMonoid (Lex ((i : ι) → α i))
Equations
abbrev Pi.Lex.orderedAddCancelCommMonoid.match_1 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedCancelAddCommMonoid (α i)] :
∀ (x x_1 : Lex ((i : ι) → α i)) (motive : x < x_1Prop) (x_2 : x < x_1), (∀ (i : ι) (hi : (j < i, x j = x_1 j) (fun (x : ι) (x_3 x_4 : α x) => x_3 < x_4) i (x i) (x_1 i)), motive )motive x_2
Equations
  • =
Instances For
    abbrev Pi.Lex.orderedAddCancelCommMonoid.match_2 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedCancelAddCommMonoid (α i)] :
    ∀ (x x_1 x_2 : Lex ((i : ι) → α i)) (motive : x + x_1 < x + x_2Prop) (x_3 : x + x_1 < x + x_2), (∀ (i : ι) (hi : (j < i, (x + x_1) j = (x + x_2) j) (fun (x : ι) (x_4 x_5 : α x) => x_4 < x_5) i ((x + x_1) i) ((x + x_2) i)), motive )motive x_3
    Equations
    • =
    Instances For
      instance Pi.Lex.orderedCancelCommMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedCancelCommMonoid (α i)] :
      OrderedCancelCommMonoid (Lex ((i : ι) → α i))
      Equations
      instance Pi.Lex.orderedAddCommGroup {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedAddCommGroup (α i)] :
      OrderedAddCommGroup (Lex ((i : ι) → α i))
      Equations
      theorem Pi.Lex.orderedAddCommGroup.proof_1 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedAddCommGroup (α i)] :
      ∀ (x x_1 : Lex ((i : ι) → α i)), x x_1∀ (a : Lex ((i : ι) → α i)), a + x a + x_1
      instance Pi.Lex.orderedCommGroup {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → OrderedCommGroup (α i)] :
      OrderedCommGroup (Lex ((i : ι) → α i))
      Equations
      theorem Pi.Lex.linearOrderedAddCancelCommMonoid.proof_1 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → LinearOrderedCancelAddCommMonoid (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      a b∀ (c : Lex ((i : ι) → α i)), c + a c + b
      noncomputable instance Pi.Lex.linearOrderedAddCancelCommMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedCancelAddCommMonoid (α i)] :
      Equations
      • One or more equations did not get rendered due to their size.
      theorem Pi.Lex.linearOrderedAddCancelCommMonoid.proof_2 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [(i : ι) → LinearOrderedCancelAddCommMonoid (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) (c : Lex ((i : ι) → α i)) :
      a + b a + cb c
      theorem Pi.Lex.linearOrderedAddCancelCommMonoid.proof_5 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedCancelAddCommMonoid (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      max a b = if a b then b else a
      theorem Pi.Lex.linearOrderedAddCancelCommMonoid.proof_6 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedCancelAddCommMonoid (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      theorem Pi.Lex.linearOrderedAddCancelCommMonoid.proof_3 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedCancelAddCommMonoid (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      a b b a
      theorem Pi.Lex.linearOrderedAddCancelCommMonoid.proof_4 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedCancelAddCommMonoid (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      min a b = if a b then a else b
      noncomputable instance Pi.Lex.linearOrderedCancelCommMonoid {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedCancelCommMonoid (α i)] :
      LinearOrderedCancelCommMonoid (Lex ((i : ι) → α i))
      Equations
      • One or more equations did not get rendered due to their size.
      theorem Pi.Lex.linearOrderedAddCommGroup.proof_4 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedAddCommGroup (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      max a b = if a b then b else a
      theorem Pi.Lex.linearOrderedAddCommGroup.proof_5 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedAddCommGroup (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      theorem Pi.Lex.linearOrderedAddCommGroup.proof_1 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedAddCommGroup (α i)] :
      ∀ (x x_1 : Lex ((i : ι) → α i)), x x_1∀ (a : Lex ((i : ι) → α i)), a + x a + x_1
      noncomputable instance Pi.Lex.linearOrderedAddCommGroup {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedAddCommGroup (α i)] :
      LinearOrderedAddCommGroup (Lex ((i : ι) → α i))
      Equations
      • Pi.Lex.linearOrderedAddCommGroup = let __spread.0 := inferInstance; LinearOrderedAddCommGroup.mk LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT
      theorem Pi.Lex.linearOrderedAddCommGroup.proof_2 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedAddCommGroup (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      a b b a
      theorem Pi.Lex.linearOrderedAddCommGroup.proof_3 {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedAddCommGroup (α i)] (a : Lex ((i : ι) → α i)) (b : Lex ((i : ι) → α i)) :
      min a b = if a b then a else b
      noncomputable instance Pi.Lex.linearOrderedCommGroup {ι : Type u_1} {α : ιType u_2} [LinearOrder ι] [IsWellOrder ι fun (x x_1 : ι) => x < x_1] [(i : ι) → LinearOrderedCommGroup (α i)] :
      LinearOrderedCommGroup (Lex ((i : ι) → α i))
      Equations
      • Pi.Lex.linearOrderedCommGroup = let __spread.0 := inferInstance; LinearOrderedCommGroup.mk LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT