Documentation

Mathlib.Algebra.Order.Field.Unbundled.Basic

Basic facts for unbundled linear ordered (semi)fields #

@[simp]
theorem inv_pos {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
0 < a⁻¹ 0 < a
theorem inv_pos_of_pos {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
0 < a0 < a⁻¹

Alias of the reverse direction of inv_pos.

@[simp]
theorem inv_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
0 a⁻¹ 0 a
theorem inv_nonneg_of_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
0 a0 a⁻¹

Alias of the reverse direction of inv_nonneg.

@[simp]
theorem inv_lt_zero {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
a⁻¹ < 0 a < 0
@[simp]
theorem inv_nonpos {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
a⁻¹ 0 a 0
theorem one_div_pos {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
0 < 1 / a 0 < a
theorem one_div_neg {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
1 / a < 0 a < 0
theorem one_div_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
0 1 / a 0 a
theorem one_div_nonpos {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} :
1 / a 0 a 0
theorem div_pos {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} {b : α} [PosMulStrictMono α] (ha : 0 < a) (hb : 0 < b) :
0 < a / b
theorem div_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} {b : α} [PosMulMono α] (ha : 0 a) (hb : 0 b) :
0 a / b
theorem div_nonpos_of_nonpos_of_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} {b : α} [MulPosMono α] (ha : a 0) (hb : 0 b) :
a / b 0
theorem div_nonpos_of_nonneg_of_nonpos {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} {b : α} [PosMulMono α] (ha : 0 a) (hb : b 0) :
a / b 0
theorem zpow_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} [PosMulMono α] (ha : 0 a) (n : ) :
0 a ^ n
theorem zpow_pos_of_pos {α : Type u_1} [Semifield α] [LinearOrder α] [PosMulReflectLT α] [ZeroLEOneClass α] {a : α} [PosMulStrictMono α] (ha : 0 < a) (n : ) :
0 < a ^ n