Module operations on Mᵐᵒᵖ
#
This file contains definitions that build on top of the group action definitions in
Mathlib.Algebra.GroupWithZero.Action.Opposite
.
instance
MulOpposite.instModule
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
MulOpposite.distribMulAction
extends to a Module
Equations
- MulOpposite.instModule R = Module.mk ⋯ ⋯
def
MulOpposite.opLinearEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
The function op
is a linear equivalence.
Equations
- MulOpposite.opLinearEquiv R = let __src := MulOpposite.opAddEquiv; { toFun := __src.toFun, map_add' := ⋯, map_smul' := ⋯, invFun := __src.invFun, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
MulOpposite.coe_opLinearEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
⇑(MulOpposite.opLinearEquiv R) = MulOpposite.op
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_symm
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
⇑(MulOpposite.opLinearEquiv R).symm = MulOpposite.unop
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_toLinearMap
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
⇑↑(MulOpposite.opLinearEquiv R) = MulOpposite.op
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_symm_toLinearMap
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
⇑↑(MulOpposite.opLinearEquiv R).symm = MulOpposite.unop
theorem
MulOpposite.opLinearEquiv_toAddEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
(MulOpposite.opLinearEquiv R).toAddEquiv = MulOpposite.opAddEquiv
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_addEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
↑(MulOpposite.opLinearEquiv R) = MulOpposite.opAddEquiv
theorem
MulOpposite.opLinearEquiv_symm_toAddEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
(MulOpposite.opLinearEquiv R).symm.toAddEquiv = MulOpposite.opAddEquiv.symm
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_symm_addEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
↑(MulOpposite.opLinearEquiv R).symm = MulOpposite.opAddEquiv.symm