Documentation

Mathlib.Algebra.Category.ModuleCat.Sheaf.PushforwardContinuous

Pushforward of sheaves of modules #

Assume that categories C and D are equipped with Grothendieck topologies, and that F : C ⥤ D is a continuous functor. Then, if φ : S ⟶ (F.sheafPushforwardContinuous RingCat.{u} J K).obj R is a morphism of sheaves of rings, we construct the pushforward functor pushforward φ : SheafOfModules.{v} R ⥤ SheafOfModules.{v} S.

@[simp]
theorem SheafOfModules.pushforward_map_val {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {J : CategoryTheory.GrothendieckTopology C} {K : CategoryTheory.GrothendieckTopology D} {F : CategoryTheory.Functor C D} {S : CategoryTheory.Sheaf J RingCat} {R : CategoryTheory.Sheaf K RingCat} [F.IsContinuous J K] [F.IsContinuous J K] (φ : S (F.sheafPushforwardContinuous RingCat J K).obj R) :
∀ {X Y : SheafOfModules R} (f : X Y), ((SheafOfModules.pushforward φ).map f).val = (PresheafOfModules.pushforward φ.val).map f.val
@[simp]
theorem SheafOfModules.pushforward_obj_val {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {J : CategoryTheory.GrothendieckTopology C} {K : CategoryTheory.GrothendieckTopology D} {F : CategoryTheory.Functor C D} {S : CategoryTheory.Sheaf J RingCat} {R : CategoryTheory.Sheaf K RingCat} [F.IsContinuous J K] [F.IsContinuous J K] (φ : S (F.sheafPushforwardContinuous RingCat J K).obj R) (M : SheafOfModules R) :
((SheafOfModules.pushforward φ).obj M).val = (PresheafOfModules.pushforward φ.val).obj M.val

The pushforward of sheaves of modules that is induced by a continuous functor F and a morphism of sheaves of rings φ : S ⟶ (F.sheafPushforwardContinuous RingCat J K).obj R.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible, inline]

    Given M : SheafOfModules R and X : D, this is the restriction of M over the sheaf of rings R.over X on the category Over X.

    Equations
    Instances For