More operations on subalgebras #
In this file we relate the definitions in Mathlib.RingTheory.Ideal.Operations
to subalgebras.
The contents of this file are somewhat random since both Mathlib.Algebra.Algebra.Subalgebra.Basic
and Mathlib.RingTheory.Ideal.Operations
are somewhat of a grab-bag of definitions, and this is
whatever ends up in the intersection.
theorem
AlgHom.ker_rangeRestrict
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Semiring B]
[Algebra R B]
(f : A →ₐ[R] B)
:
RingHom.ker f.rangeRestrict = RingHom.ker f
theorem
Subalgebra.mem_of_finset_sum_eq_one_of_pow_smul_mem
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommRing S]
[Algebra R S]
(S' : Subalgebra R S)
{ι : Type u_3}
(ι' : Finset ι)
(s : ι → S)
(l : ι → S)
(e : ∑ i ∈ ι', l i * s i = 1)
(hs : ∀ (i : ι), s i ∈ S')
(hl : ∀ (i : ι), l i ∈ S')
(x : S)
(H : ∀ (i : ι), ∃ (n : ℕ), s i ^ n • x ∈ S')
:
x ∈ S'
Suppose we are given ∑ i, lᵢ * sᵢ = 1
∈ S
, and S'
a subalgebra of S
that contains
lᵢ
and sᵢ
. To check that an x : S
falls in S'
, we only need to show that
sᵢ ^ n • x ∈ S'
for some n
for each sᵢ
.
theorem
Subalgebra.mem_of_span_eq_top_of_smul_pow_mem
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommRing S]
[Algebra R S]
(S' : Subalgebra R S)
(s : Set S)
(l : ↑s →₀ S)
(hs : (Finsupp.total (↑s) S S Subtype.val) l = 1)
(hs' : s ⊆ ↑S')
(hl : ∀ (i : ↑s), l i ∈ S')
(x : S)
(H : ∀ (r : ↑s), ∃ (n : ℕ), ↑r ^ n • x ∈ S')
:
x ∈ S'