@[simp]
theorem
RingEquiv.piEquivPiSubtypeProd_symm_apply
{ι : Type u_3}
(p : ι → Prop)
[DecidablePred p]
(Y : ι → Type u_4)
[(i : ι) → Add (Y i)]
[(i : ι) → Mul (Y i)]
(f : ((i : { x : ι // p x }) → Y ↑i) × ((i : { x : ι // ¬p x }) → Y ↑i))
(x : ι)
:
(RingEquiv.piEquivPiSubtypeProd p Y).symm f x = if h : p x then f.1 ⟨x, h⟩ else f.2 ⟨x, h⟩
@[simp]
theorem
RingEquiv.piEquivPiSubtypeProd_apply
{ι : Type u_3}
(p : ι → Prop)
[DecidablePred p]
(Y : ι → Type u_4)
[(i : ι) → Add (Y i)]
[(i : ι) → Mul (Y i)]
(f : (i : ι) → Y i)
:
(RingEquiv.piEquivPiSubtypeProd p Y) f = (fun (x : { x : ι // p x }) => f ↑x, fun (x : { x : ι // ¬p x }) => f ↑x)
def
RingEquiv.piEquivPiSubtypeProd
{ι : Type u_3}
(p : ι → Prop)
[DecidablePred p]
(Y : ι → Type u_4)
[(i : ι) → Add (Y i)]
[(i : ι) → Mul (Y i)]
:
Equations
- RingEquiv.piEquivPiSubtypeProd p Y = { toEquiv := Equiv.piEquivPiSubtypeProd p Y, map_mul' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
RingEquiv.piCongrLeft'_apply
{α : Type u_1}
{β : Type u_2}
(A : α → Type u_4)
(e : α ≃ β)
[(a : α) → Add (A a)]
[(a : α) → Mul (A a)]
(f : (a : α) → A a)
(x : β)
:
(RingEquiv.piCongrLeft' A e) f x = f (e.symm x)
@[simp]
theorem
RingEquiv.piCongrLeft'_symm_apply
{α : Type u_1}
{β : Type u_2}
(A : α → Type u_4)
(e : α ≃ β)
[(a : α) → Add (A a)]
[(a : α) → Mul (A a)]
(f : (b : β) → A (e.symm b))
(x : α)
:
(RingEquiv.piCongrLeft' A e).symm f x = ⋯ ▸ f (e x)
def
RingEquiv.piCongrLeft'
{α : Type u_1}
{β : Type u_2}
(A : α → Type u_4)
(e : α ≃ β)
[(a : α) → Add (A a)]
[(a : α) → Mul (A a)]
:
((a : α) → A a) ≃+* ((b : β) → A (e.symm b))
Equations
- RingEquiv.piCongrLeft' A e = { toEquiv := Equiv.piCongrLeft' A e, map_mul' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
RingEquiv.piCongrLeft'_symm
{α : Type u_1}
{β : Type u_2}
{R : Type u_4}
[Add R]
[Mul R]
(e : α ≃ β)
:
(RingEquiv.piCongrLeft' (fun (x : α) => R) e).symm = RingEquiv.piCongrLeft' (fun (a : β) => R) e.symm
@[simp]
theorem
RingEquiv.piCongrLeft_apply
{α : Type u_1}
{β : Type u_2}
(B : β → Type u_4)
(e : α ≃ β)
[(b : β) → Add (B b)]
[(b : β) → Mul (B b)]
:
∀ (a : (b : α) → B (e.symm.symm b)) (a_1 : β),
(RingEquiv.piCongrLeft B e) a a_1 = (↑(RingEquiv.piCongrLeft' B e.symm)).symm a a_1
@[simp]
theorem
RingEquiv.piCongrLeft_symm_apply
{α : Type u_1}
{β : Type u_2}
(B : β → Type u_4)
(e : α ≃ β)
[(b : β) → Add (B b)]
[(b : β) → Mul (B b)]
:
∀ (a : (a : β) → B a) (b : α), (RingEquiv.piCongrLeft B e).symm a b = (RingEquiv.piCongrLeft' B e.symm) a b
def
RingEquiv.piCongrLeft
{α : Type u_1}
{β : Type u_2}
(B : β → Type u_4)
(e : α ≃ β)
[(b : β) → Add (B b)]
[(b : β) → Mul (B b)]
:
((a : α) → B (e a)) ≃+* ((b : β) → B b)
Equations
- RingEquiv.piCongrLeft B e = (RingEquiv.piCongrLeft' B e.symm).symm