Documentation

AdeleRingLocallyCompact.Algebra.Order.GroupWithZero.WithZero

Adjoining a zero to a group #

This file contains basic inequality results on the unit subgroup of a group with an adjoined zero.

@[simp]
theorem WithZero.unitsWithZeroEquiv_units_val {α : Type u_1} [Group α] {γ : (WithZero α)ˣ} :
γ = (WithZero.unitsWithZeroEquiv γ)
theorem WithZero.units_toAdd_le_of_le {α : Type u_2} [AddGroup α] [Preorder α] {γ : (WithZero (Multiplicative α))ˣ} {m : WithZero (Multiplicative α)} (hm : m 0) (hγ : γ m) :
Multiplicative.toAdd (WithZero.unitsWithZeroEquiv γ) Multiplicative.toAdd (WithZero.unzero hm)
theorem WithZero.units_toAdd_neg_add_of_le {α : Type u_2} [AddGroup α] [Preorder α] {γ : (WithZero (Multiplicative α))ˣ} [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] {m : WithZero (Multiplicative α)} (hm : m 0) (hγ : γ m) :
0 -Multiplicative.toAdd (WithZero.unitsWithZeroEquiv γ) + Multiplicative.toAdd (WithZero.unzero hm)
theorem WithZero.units_toAdd_neg_add_one {α : Type u_2} [AddGroup α] [Preorder α] [One α] {γ : (WithZero (Multiplicative α))ˣ} [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [ZeroLEOneClass α] (hγ : γ 1) :
0 -Multiplicative.toAdd (WithZero.unitsWithZeroEquiv γ) + 1