Adjoining a zero to a group #
This file contains basic inequality results on the unit subgroup of a group with an adjoined zero.
theorem
WithZero.units_toAdd_le_of_le
{α : Type u_2}
[AddGroup α]
[Preorder α]
{γ : (WithZero (Multiplicative α))ˣ}
{m : WithZero (Multiplicative α)}
(hm : m ≠ 0)
(hγ : ↑γ ≤ m)
:
Multiplicative.toAdd (WithZero.unitsWithZeroEquiv γ) ≤ Multiplicative.toAdd (WithZero.unzero hm)
theorem
WithZero.units_toAdd_neg_add_of_le
{α : Type u_2}
[AddGroup α]
[Preorder α]
{γ : (WithZero (Multiplicative α))ˣ}
[CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x ≤ x_1]
{m : WithZero (Multiplicative α)}
(hm : m ≠ 0)
(hγ : ↑γ ≤ m)
:
0 ≤ -Multiplicative.toAdd (WithZero.unitsWithZeroEquiv γ) + Multiplicative.toAdd (WithZero.unzero hm)
theorem
WithZero.units_toAdd_neg_add_one
{α : Type u_2}
[AddGroup α]
[Preorder α]
[One α]
{γ : (WithZero (Multiplicative α))ˣ}
[CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x ≤ x_1]
[ZeroLEOneClass α]
(hγ : ↑γ ≤ 1)
: